Space-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems
نویسندگان
چکیده
We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov–Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the efficiency of the overall adaptive solution process. 1991 Mathematics Subject Classification. 65N30.
منابع مشابه
Discontinuous Galerkin finite element methods for second order hyperbolic problems
In this paper, we prove a priori and a posteriori error estimates for a finite element method for linear second order hyperbolic problems (linear wave equations) based on using spacetime finite element discretizations (for displacements and displacement velocities) with (bilinear) basis functions which are continuous in space and discontinuous in time. We refer to methods of this form as discon...
متن کاملMultistep-Galerkin Methods for Hyperbolic Equations
Multistep methods for firstand second-order ordinary differential equations are used for the full discretizations of standard Galerkin approximations to the initial-periodic boundary value problem for first-order linear hyperbolic equations in one space dimension and to the initial-boundary value problem for second-order lin2 ear selfadjoint hyperbolic equations in many space dimensions. L -err...
متن کاملHigh order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows
In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...
متن کاملAdaptive discontinuous evolution Galerkin method for dry atmospheric flow
We present a new adaptive genuinely multidimensional method within the framework of the discontinuous Galerkin method. The discontinuous evolution Galerkin (DEG) method couples a discontinuous Galerkin formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems, such that all of the infinitely many directions of...
متن کاملArbitrary High Order Discontinuous Galerkin Schemes
In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 16 شماره
صفحات -
تاریخ انتشار 2016